
```
# libraries
library(ggplot2)
library(dplyr)
library(tidyr) # For pivot longer function
library(gridExtra)
library(ggthemes) # For additional themes
library(RColorBrewer) # For color palettes
# color palette
palette cut <- brewer.pal(n = 5, name = "Dark2") # 5 colors for 'cut'</pre>
hist plot \leftarrow ggplot(diamonds, aes(x = price)) +
  geom histogram(aes(y = after stat(density)), bins = 30, fill = "gray80", color =
"black") +
  stat_function(fun = dnorm, args = list(mean = mean(diamonds$price), sd =
sd(diamonds$price)), color = "blue", size = 1) +
  labs(title = "Histogram of Diamond Prices", x = "Price", y = "Density") +
  theme minimal(base size = 15)
# Bar Plot
bar plot <- diamonds %>%
  group by(cut) %>%
  ggplot(aes(x = cut, y = count, fill = cut)) +
  geom bar(stat = "identity") +
  labs (title = "Bar Plot: Count of Diamonds by Cut", x = "Cut", y = "Count") +
  scale fill manual(values = palette cut) +
  theme minimal(base size = 15)
# Box Plot
box plot <- ggplot(diamonds, aes(x = cut, y = price, fill = cut)) +
  geom boxplot() +
  labs(title = "Box Plot: Price Distribution by Cut", x = "Cut", y = "Price") +
  scale fill manual(values = palette cut) +
  theme minimal(base size = 15)
# Scatter Plot
facet scatter <- ggplot(diamonds, aes(x = carat, y = price, color = color)) +</pre>
  geom point(alpha = 0.5, size = 2) +
  facet wrap(~ cut) +
  labs(\overline{t}itle = "Faceted Scatter Plot: Carat vs Price by Color", x = "Carat", y = "Price")
  scale color brewer(palette = "Set1") +
  theme minimal(base size = 15)
# Heatmap
heatmap data <- diamonds %>%
  group by(cut, color) %>%
  summarise(avg price = mean(price), .groups = "drop") # Avoid warning
heatmap \leftarrow ggplot(heatmap data, aes(x = cut, y = color, fill = avg price)) +
  geom tile(color = "white") +
  scale fill gradient(low = "lightblue", high = "darkblue") +
  labs(title = "Heatmap: Average Price by Cut and Color", x = "Cut", y = "Color") +
  theme minimal(base size = 15)
# Pie Chart
pie data <- diamonds %>%
  group by(cut) %>%
  summarise(count = n()) %>%
  mutate(percentage = count / sum(count))
```

```
pie_chart <- ggplot(pie_data, aes(x = "", y = percentage, fill = cut)) +
    geom_bar(stat = "identity", width = 1) +
    coord_polar(theta = "y") +
    labs(title = "Pie Chart of Diamond Cuts") +
    scale_fill_brewer(palette = "Dark2") +
    theme_void(base_size = 15)

# Arrange all plots in a 2x3 grid layout
grid.arrange(
    hist_plot, bar_plot,
    box_plot, facet_scatter,
    heatmap, pie_chart,
    ncol = 2 # Arranging in two columns for 2x3 layout
)</pre>
```

